III-V 半導體元件

III-V 半導體元件

近年來在 III-V 裝置方面的進展,Veeco/CNT Fiji® 持續處於領先地位。這包含 III-V 類材料的沉積(例如 AlN、InN 和原子層磊晶 (ALE) 合成的 GaN)、裝置品質三元化合物的磊晶生長(例如 AlxGa1-xN 和 InlxAl1-xN),以及緩衝層的沉積,以實現異質磊晶以及閘極介電層和鈍化層的生長。

具備原子層沉積 (ALD) 技術的 III-V 裝置:磊晶成長、多組件薄膜、鈍化層

最近在 Veeco/CNTFiji® 證明了裝置品質 AlN [2],InN [1]和 GaN [3] 的磊晶成長。在下面圖 1 中,HRTEM 和 IFFT 證實晶體 InN 與 a-藍寶石對齊。圖 2 顯示了在 GaN 上生長的高品質量 AlN - 對於 37 nm 薄膜、搖擺曲線的 FWHM 為 670 弧秒--相當於分子束磊晶技術 (MBE) 所生長的 1.6μm(420 弧秒)。

高電子移動性電晶體是以在晶格相符的半導體之間的界面處形成的高移動性 2D 電子氣為基礎。表 1 顯示在所有ALD HEMT 裝置 (ALE GaN/ALE AlGaN/ALD Al2O3) 中的低載子濃度和高移動性,表示存在 2D 電子氣。此外,由於 ALE-AlN 的表面鈍化,HEMT 裝置的性能得到了改善 [5]。原子層沉積 (ALD) 的低溫使石墨烯/III-N 異質結構得以生長 [6],ALD 保留了石墨烯的表面功能。


圖 1:藍寶石 [1] 上的 InN


圖 2:AlN/GaN /a-藍寶石的峰值 [2]

III-V 裝置的原子層沉積 (ALD) 優勢

  • 低溫鍍膜
  • 易於合金生長,包括以前未曾獲得的相位
  • 像是奈米線的 3D 結構沉積

表 1:透過 ALD/ALE [4] 的 HEMT 裝置

抽樣 μ (cm2/V-s) Ns (cm-2)
AlGaN / GaN 1042 1.6 x 1012
Al2O3 / Al0.27Ga0.73N / GaN 871 6.0 x 1011

參考資料 - 在 Veeco CNT 原子層沉積 (ALD) 平台上完成的最新出版品

  1. Nepal, N., Anderson, V. R., Hite, J. K. & Eddy, C. R., Jr. Growth and Characterization of III-N Ternary Thin Films by Plasma Assisted Atomic Layer Epitaxy at Low Temperatures. Thin Solid Films 1–17 (2015). doi:10.1016/j.tsf.2015.04.068
  2. Ozgit-Akgun, C. et al. Fabrication of flexible polymer–GaN core–shell nanofibers by the combination of electrospinning and hollow cathode plasma-assisted atomic layer deposition. J. Mater. Chem. C (2015). doi:10.1039/C5TC00343A
  3. Altuntas, H., Ozgit-Akgun, C., Donmez, I. & Biyikli, N. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films. J Appl Phys 117, 155101 (2015).
  4. OConnor, E. et al. Effect of forming gas annealing on the inversion response and minority carrier generation lifetime of n and p-In0.53Ga0.47As MOS capacitors. Microelectron Eng (2015). doi:10.1016/j.mee.2015.04.103
  5. Kao, E., Yang, C., Warren, R., Kozinda, A. & Lin, L. ALD titanium nitride coated carbon nanotube electrodes for electrochemical supercapacitors. TRANSDUCERS 2015 – 2015 18th International Solid-State Sensors, Actuators and Microsystems Conference 498–501 (2015). doi:10.1109/TRANSDUCERS.2015.7180969
  6. Haider, A., Ozgit-Akgun, C., Goldenberg, E., Okyay, A. K. & Biyikli, N. Low-Temperature Deposition of Hexagonal Boron Nitride Via Sequential Injection of Triethylboron and N 2/H 2Plasma. J Am Ceram Soc n/a–n/a (2014). doi:10.1111/jace.13213
  7. Assaud, L., Pitzschel, K., Hanbucken, M. & Santinacci, L. Highly-Conformal TiN Thin Films Grown by Thermal and Plasma-Enhanced Atomic Layer Deposition. ECS Journal of Solid State Science and Technology 3, P253–P258 (2014).
  8. Koehler, A. D., Nepal, N., Anderson, J. T., Hobart, K. D. & Kub, F. J. Investigation of AlGaN/GaN HEMTs Passivated by AlN Films Grown by Atomic Layer Epitaxy. in 135 (2013).
  9. Ozgit-Akgun, C., Donmez, I. & Biyikli, N. (Invited) Plasma-Enhanced Atomic Layer Deposition of III-Nitride Thin Films. ECS Transactions 58, 289–297 (2013).
  10. Eddy, C. R., Jr, Nepal, N., Hite, J. K. & Mastro, M. A. Perspectives on future directions in III-N semiconductor research. Journal Of Vacuum Science & Technology A-Vacuum Surfaces And Films 31, 058501 (2013).
  11. Nepal, N. et al. Epitaxial Growth of III–Nitride/Graphene Heterostructures for Electronic Devices. Appl Phys Express 6, 061003 (2013).
  12. Nepal, N. et al. Epitaxial Growth of Cubic and Hexagonal InN Thin Films via Plasma-Assisted Atomic Layer Epitaxy. Cryst Growth Des 13, 1485–1490 (2013).
  13. Ozgit-Akgun, C., Kayaci, F., Donmez, I., Uyar, T. & Biyikli, N. Template-Based Synthesis of Aluminum Nitride Hollow Nanofibers Via Plasma-Enhanced Atomic Layer Deposition. J Am Ceram Soc n/a–n/a (2012). doi:10.1111/jace.12030<
  14. Ozgit, C., Donmez, I., Alevli, M. & Biyikli, N. Atomic layer deposition of GaN at low temperatures. J Vac Sci Technol A 30, (2012).
  15. Biyikli, N., Ozgit, C. & Donmez, I. Low-Temperature Self-Limiting Growth of III-Nitride Thin Films by Plasma-Enhanced Atomic Layer Deposition. Nanosci Nanotechnol Lett4, 1008–1014 (2012).
  16. Ozgit, C., Donmez, I., Alevli, M. & Biyikli, N. Atomic layer deposition of GaN at low temperatures. J Vac Sci Technol A 30, 01A124 (2012).
  17. Alevli, M., Ozgit, C., Donmez, I. & Biyikli, N. Structural properties of AlN films deposited by plasma-enhanced atomic layer deposition at different growth temperatures. phys. stat. sol. (a) 209, 266–271 (2011).
  18. Alevli, M., Ozgit, C., Donmez, I. & Biyikli, N. The influence of N2/H2 and ammonia N source materials on optical and structural properties of AlN films grown by plasma enhanced atomic layer deposition. J Cryst Growth 335, 51–57 (2011).
  19. Alevli, M., Ozgit, C. & Donmez, I. The Influence of Growth Temperature on the Properties of AlN Films Grown by Atomic Layer Deposition. ACTA PHYSICA POLONICA A (2011).
  20. Ozgit, C., Donmez, I. & Biyikli, N. Self-Limiting Growth of GaN at Low Temperatures. ACTA PHYSICA POLONICA A (2011).